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The three dimensional three degree of freedom re-entry equations of 
motion and the input requirements for their solution on the IBM 7090 
digital computer are derived. The material presented is the first formu- 
lations required to achieve eventually a hardware error analysis capability 
for three dimensional six degree of freedom closed loop re-entry guidance 
and control. 
dimensional three degree of freedom re-entry trajectory expressed in terms 
of terrestrial navigational coordinates. The derivation of the coordinate 
transformation equations required to express the solution of the above 
equations in terms of inertial platform coordinates is also presented. 

The presentation consists of the derivation of the three 
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DEFINITION OF SYMBOLS 

DEFINITION 

Space-fixed azimuth of initial space-fixed velocity 

UNITS 

rad 

rad 

SYMBOL 

AI 

Aw Earth-referenced azimuth of earth-referenced wind 
velocity 

Earth-referenced azimuth of earth-referenced aero- 
dynamic velocity 

rad 
AZ 

Aerodynamic drag coefficient for zero angle of attack 
0 

cD 

Total aerodynamic drag coefficient cD 

Total aerodynamic lift coefficient cL 

D Magnitude of the total aerodynamic drag force 

Total aerodynamic force FA 
Total aerodynamic drag force 

Total gravitational force 

Total aerodynamic lift force FL 

G Universal gravitational constant 

Magnitude of the gravitational acceleration in the 
geocentric radial direction r G 

m/s2 Magnitude of the gravitational acceleration in the 
direction of increasing earth longitude 

m/s2 
C 

Go Magnitude of the gravitational acceleration in the 
direction of increasing geocentric latitude 

J Second order figure constant of the earth rad 

kg 

kg - s2/m 
m 

m2 

L Magnitude of the total aerodynamic lift force 

M 

R 
- 

Mass of the earth 

Displacement from the center of the earth 

S Vehicle effective aerodynamic surface area 

iv 
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DEFINITION OF SYMBOLS (Cont'd) 

DEFINITION UNITS 

U 
- 
vA 

vA 

vW 

D a 

aL 

a r 

A a 

a 
@C 

bD 

bL 

0 
h 

h 

j 

m 

9 

r 
0 

Gravitational potential of the earth 

Aerodynamic velocity 

Magnitude of aerodynamic velocity 

Magnitude of initial space-fixed velocity 

Magnitude of earth-referenced wind velocity 

Empirical aerodynamic drag coefficient caused by 
vehicie angie of attack 

Empirical aerodynamic lift coefficient caused by 
vehicle angle of attack 

Magnitude of space-fixed acceleration in 
instantaneous direction of increasing geocentric 
displacement 

Magnitude of space-fixed acceleration in instantaneous 
direction of increasing space-fixed longitude 

Magnitude of space-fixed acceleration in instantaneous 
direction of increasing geocentric latitude 

Empirical aerodynamic drag coefficient as a function 
of angle of attack squared 

Empirical aerodynamic lift coefficient as a function 
of angle of attack squared 

Ini t ia 1' geocentric a It i tude 
Geocentric altitude 

Inclination of the initial orbit plane 

Vehicle mass 

Dynamic pressure 

Magnitude of initial radial displacement from the 
center of the earth 

m2/s2 

m/s 

m/s 

m/s 

m/s 

rad 

rad 

m/s2 

m/s2 

m/s2 

rad 

rad 

m 

m 

rad 

kg-s2/m 

kg/m2 

m 

V 



DEFINITION OF SYMBOLS (Cont'd) 

DEFINITION UNITS 

m 

SYMBOL 

Magnitude of radial displacement from the center of 
the earth 

r 

Equatorial earth radius m 

m 

m/s 

E r 

Polar earth radius 

Magnitude of initial radial velocity from the center 
of the earth 

r 
P 

0 
; 

Magnitude of radial velocity from the center of the 
earth 

r 

.. 
r m/s2 

S 

d/S 

Magnitude of radial acceleration from the center of the 
earth 

Time 

Space-fixed velocity of air molecule in a stationary 
atmosphere 

t - 
V 
aE 

Space-fixed velocity of air molecule in flowing 
atmosphere 

V 
. w  a 

Magnitude of space-fixed velocity in the instantaneous 
direction of increasing geocentric displacement 

V r 

Magnitude of space-fixed velocity in the instantaneous 
direction of increasing space-fixed longitude 

Magnitude of space-fixed velocity in the instantaneous 
direction of increasing geocentric latitude 

V 
@C 

Reference space-fixed earth-centered Cartesian 
coordinate in equatorial plane 

X m 

Earth-centered Cartesian coordinate generated by first 
Euler rotation 

x1 m 

Earth-centered Cartesian coordinate generated by 
second Euler rotation 

X 
2 

m 

Reference space-fixed earth-centered Cartesian 
coordinate in equatorial plane 

m Y 

vi 



SYMBOLS 

y1 

y2 

z 

z1 

2 z 

V 

At 

DEFINITION OF SYMBOLS (Cont 'd) 

DEFINITION 

Earth-centered Cartesian coordinate generated by first 
Euler rotatJon 

Earth-centered Cartesian coordinate generated by 
second Euler rotation 

Reference space-fixed earth-centered Cartesian 
coordinate in equatorial plane 

Earth-centered Cartesian coordinate generated by first 
Euler rotation 

Earth-centered Cartesian coordinate generated by 
second Euler rotation 

"Del" vector operator, or "Nabla" 

Numerical integration time step 

Data printout time step interval 

Space-fixed longitude 

Space-fixed longitudinal angular velocity 

Space-fixed longitudinal angular acceleration 

Space-fixed total angular velocity 

Angle of attack 

Bank angle: defined as the angle between the 
aerodynamic lift vector and the vertical geocentric 
plane containing the aerodynamic velocity vector 

Space-fixed displacement in the initial cross range 
direct ion 

Space-fixed displacement in the direction of the 
initial geocentric altitude 

Displacement of sea level surface from the center of 
the earth in the direction of the initial geocentric 
a 1 t it ude 

UNITS 

m 

m 

m 

m 

m 

l / m  

S 

S 

rad 

rad/s 

rad/s2 

rad/s 

rad 

rad 

m 

m 

m 

vii 



SYMBOL 

?P 

@A 

@I 

0 
x 
x 

0 
i 
i 
.. x 
5 

P 

0 
@C 

@C 

4 0 

C 
i 

@C 

.. 

w 

DEFINITION OF SYMBOLS (Cont 'd) 

DEFINITION 

Displacement from sea level surface in the d-rection 
of the initial geocentric altitude 

Earth-referenced dive angle of aerodynamic velocity 

Space-fixed dive angle of initial space-fixed velocity 

Initial ea r th  longitude 

Earth longitude 

Initial ea r th  longitudinal angular velocity 

Earth longitudinal angular velocity 

Earth longitudinal angular acceleration 

Space-fixed displacement in initial downrange direction 

Atmospheric mass density 

Initial geocentric latitude 

Geocentric latitude 

Initial geocentric latitudinal angular velocity 

Geocentric latitudinal angular velocity 

Geocentric latitudinal angular acceleration 

Angular velocity of ear th  rotation 

UNITS 

m 

rad 

rad 

rad 

rad 

rad/s 

rad/s 

rad/s2 

m 

kg-s2/m4 

rad 

rad 

rad/s 

rad/s 

rad/s2 

rad/s 

viii 
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SUMMARY 

The three dimensional three degree of freedom re-entry equations of 
motion and input requirements for their solution on the IBM 7090 digital 
computer are derived. The material presented is the first formulations 
required to achiev,e eventually a hardware error analysis capability for 
three dimensional six degree of freedom closed loop re-entry guidance and 
control. The presentation consists of the derivation of the three simulta- 
neous differential equations of motion required to solve for the three di- 
mensional three degree of freedom re-entry trajectory expressed in terms 
of terrestrial navigational coordinates. The derivation of the coordinate 
transformation equations required to express the solution of -the above 
equations in terms of inertial platform coordinates is also presented. 

SECTION I. INTRODUCTION 

The problem of hardware error analysis requires that accurate simula- 
tion models of various types of mission trajectories be available. These 
trajectories are used to determine the effects of various instrumental 
errors on the overall accuracy of the guidance systems. 

The general approach to obtaining three degree of freedom equations 
of motion for a three-dimensional re-entry trajectory is a treatment of 
classical particle dynamics utilizing vector kinematics for the derivation 
of the space-fixed acceleration. The dynamical model of the re-entry 
vehicle is a point mass subjected to the forces of the gravitational field 
of the earth and aerodynamic lift and drag. 

First,the space-fixed acceleration, expressed in terms of a moving 
coordinate system, is derived by vector kinematics for direct substitution 
into Newton's Second Law. The gravitational and aerodynamic forces are 
then expressed in terms of that moving coordinate system and equated to 
the vehicle mass times the space-fixed acceleration. Subsequent cancella- 
tion of the unit vectors from the three component equations then yields 
the three scalar differential equations to be solved simultaneously for 
the three dimensional re-entry trajectory. 
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A judicious sequence of Euler angle rotations of the moving coordinate 
axes then transforms the trajectory parameters expressed in the moving 
coordinate system into equivalent parameters in a coordinate system 
oriented in the direction of an idealized inertial platform coordinate 
s y s tem . 

SECTION 11. DEFINITION OF COORDINATE SYSTEMS 

Two rectangular coordinate systems and one spherical coordinate 
system are utilized in the treatment of the re-entry problem for which 
the center of the rotating earth is considered as being space-fixed. 
These three coordinate systems are illustrated in Figure 1. 

- -  
The &, ly, 1, unit vectors represent a right-handed space-fixed 

rectangular coordinate system which has its origin at the center of the 
earth. The x and y axes are oriented in the equatorial plane with the 
x axis oriented in a reference space-fixed meridian plane, and the z 
axis collinear with the North Pole. This coordinate system serves only 
as a visual aid in deriving the space-fixed acceleration and is not 
intended to convey any other physical significance. 

- -  
The i@ Y l r Y  1 A unit vectors represent a rotating spherical coordinate 

C 
system which also has its origin at the center of the earth. The unit 
vectors are oriented in the right-handed sense and represent the 
instantaneous direction of increasing geocentric latitude, the instan- 
taneous direction of increasing geocentric displacement,and the 
instantaneous direction of increasing space-fixed longitude, respectively. 
The three simultaneous differential equations of motion are derived in 
terms of this coordinate system. 

- 
The i 1 and 1 unit vectors represent a space-fixed coordinate 

5 ’  q y  c 
system which has its origin on the surface of the earth directly beneath 
the initial re-entry point. The unit vectors are oriented in the right- 
handed sense and represent the initial downrange direction, initial 
geocentric altitude direction, and initial cross range direction, respec- 
tively. The solution of the equations of motion is resolved into this 
coordinate system. 

SECTION 111. DERIVATION OF SPACE-FIXED ACCELERATIONS 

To derive the space-fixed accelerations in terms of the - -  
rotating coordinate system ‘i 

vector differential operator on R: 

, lr, lA, it is convenient to employ the 
@C - 
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where the f irst  term i s  the der ivat ive of the geocgntrLc displacement 
l,, the  second term r e l a t i v e  t o  the space-fixed coordinate system lX, 

is  the derivative Of t h e  geocentric displacement re a t i v e  t o  the ro ta t ing  
coordinate system 1 , lr, l,, and the th i rd  t e r m  i s  the angular ve loc i ty  

vector of the ro ta t ing  coordinate system r e l a t i v e  t o  the space-fixed 
coordinate system. 

l1’ 

@ C  

Referring t o  Figure 1, i t  i s  apparent t h a t  the t o t a l  angular 
ve loc i ty  vector may be resolved i n t o  two cpponent  vectors  representing 
angular veloci ty  i n  the equator ia l  plane (A) and angular ve loc i ty  i n  the 
polar plane ( Q ~ ) :  

Resolving the vector representing the angular ve loc i ty  i n  the equator ia l  
plane s t i l l  fur ther  i n  the polar plane: 

(3 ) 

- - 
Substi tuting equation 3 i n t o  equation 1 and expressing R as r l  y ie ld  
the familiar space-fixed veloci ty:  r 

- . -  e . -  
x ( r l ) = r l  + r A c ~ s @ ~ l ~ + r @  

C 
C 

r r 

Thus, the space-fixed component v e l o c i t i e s  are: 

v = rQc 
@ C  

v = r  r 

vA = r A cos Qc 

- 
A subst i tut ion of equation 4 for  R i n  equation 1 yields  the desired 
space-fixed accelerat ions.  

( 4 )  

( 6  

(7) 
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+ (A cos Q~ + A sin oC lr - 6c 1n> 
c 

.. - . *  - " -  . -  - + r Qc lo + r 1 + r A cos QC 1, r = r QC lQ 
C C 

I. - . .  e . -  - 
+ r A cos Qc 1, - r Oc A sin QC 1, + r A cos Qc lA 

- . .  - - r A2 cos2 Qc lr - r @ A sin Qc lA 
C . - 

+ r A2 sin Qc cos 0 - r ic2ir + 
C @c '.C le i i 

.. - 
= (r oC + 2; i + r ;22 sin oC cos eC) 

C C 

" - + (r - r ic 2 - r cos2 Q ~ )  lr 

.. . .  . .  - + (r A cos QC + 2r A cos Qc - 2r 0 A sin Qc) lA ( 8 )  
C 

Thus, the space-fixed component accelerations are: 
.. 

a = r Q c  + 2; i + r A2 sin @c cos Q~ 
C 

@C 

.. 
a = r - r Q c  2 - r A2 cos2 aC r .. 
a = r A cos oC + 2; i cos Q~ - 2r i A sin Q~ 

A C 

It is convenient to make the substitution of earth longitude for 
space-fixed longitude so that the equations of motion may then be expressed 
in terms of geocentric latitude, earth longitude, and geocentric altitude, 
which are the usual terrestrial navigational parameters. This is 
accomplished by the angular velocity substitution: 



6 

A = h + w  

where X is the earth longitude and w is the angular velocity of the earth. 
(Note that the new rotating coordinate unit vector i 
the old rotating coordinate unit vector lA.) 

and space-fixed acceleration then become: 

is collinear with h - 
The space-fixed velocity 

- 2 .. + [r - r ic 2 - r (i + w) 

+ [r 'h' cos ac + 2; (i + w> cos Q~ 

cos2 ~~1 lr 

This acceleration equation is now of the form which can be substituted 
into Newton's Second Law in order to obtain the equations of motion for 
a re-entry trajectory. 

SECTION IV. DERIVATION OF GRAVITATIONAL FORCES 

The gravitational potential external to the surface of an oblate 
earth is assumed (Ref. 1) to be: 

where G is the universal gravitational constant, M is the mass of the 
earth, r is the geocentric displacement of the point in consideration, 
J is the second order figure constant for the earth, rE is the equatorial 

radius of the earth, and (bc is the geocentric latitude. 

The gradient vector operator in spherical coordinates is: 

1 A -  1 
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The gravitational force per unit mass may be obtained by taking the 
negative of the gradient of the gravitational potential: 

- -  . vu  FG - -  
m 

Thus, the gravitational.components of acceleration for the earth are: 

G = O  h 

These-components are the force per unit mass terms caused by the gravita- 
tional acceleration. These terms are to be used in Newton's Second Law. 

SECTION V .  DERIVATION OF AERODYNAMIC FORCES 

For the derivation of the aerodynamic forces on the re-entry vehicle, 
it is necessary to depart from the particle dynamics approach long enough 
to adopt a rigid body model of the vehicle by which aerodynamic parameters 
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may be defined. 
conical frustum having a sector of a sphere as its blunt base. 
vehicle model has an auxiliary, controlled, moveable lateral surface by 
which an angle of attack with respect to the vehicle symmetry axis may 
be generated in the vehicle syrmnetry plane. 
dynamics are assumed not to be coupled with the exterior ballistics of 
the vehicle center of mass, however, and the aerodynamic lift and drag 
forces are considered as acting through the vehicle center of mass 
exclusively. Then, the problem remains essentially one of particle 
dynamics,with the concept of a rigid body vehicle introduced only for 
the purpose of defining the direction of the lift and drag forces with 
respect to the aerodynamic velocity vector. 

The vehicle is symbolically represented by a blunted 
The 

The vehicle rigid body 

The aerodynamic velocity is the velocity of the vehicle center of 
mass with respect to the ambient atmosphere. 
assumed to be stationary with respect to the rotating earth, with any 
variations being taken into consideration as wind effects. The 
aerodynamic velocity is computed as the relative velocity of the vehicle 
center of mass to a coincident air molecule point mass. The space-fixed 
velocity of the air particle in the stationary atmosphere is assumed to 
be : 

The earth's atmosphere is 

Assuming that the wind effects of the air mass are restricted to a mass 
flow which is laminar with respect to geocentric altitude, the velocity 
of the air particle then becomes: 

45) lA v = v cos + o ir + (r w cos @c + vW sin 
C 

AW w Aw l@ 

where V 

with respect to stationary air at a geocentric displacement r. 
aerodynamic velocity is then obtained by taking the difference of 
equation 22 from equation 13 to yield the relative velocity: 

and % are the speed and azimuth, respectively, of the air flow W 
The 

- 
VA = (r @ - V cos i@ + i ir c w  

C 

For the resolution of the lift and drag vectors into the rotating 
coordinate system, it is convenient to define two reference angles to 
describe the orientation of the aerodynamic velocity vector in that 
coordinate system. Thus, the dive angle of the aerodynamic velocity 
vector is defined to be: 



'A - - cos-1 {k} 
and the azimuth of the aerodynamic velocity 

r X cos $= - Vw sin 
A = tan 

C 
Z 

The aerodynamic drag vector is defined 

9 

(24)  

vector is defined to be: 

(25) 

to be collinear with the 
aerodynamic veiocity vecior but oppositely directed. 
lift vector is defined to be normal to the aerodynamic velocity vector, 
oriented in the vehicle symmetry plane, and directed oppositely from the 
vehicle's auxiliary lateral surface. 

The aerodynamic 

The resolution of the aerodynamic lift and drag vectors into the 
rotating coordinate axes is illustrated in Figure 2. The bottom view 
represents the local geocentric vertical plane which contains the 
aerodynamic velocity vector,and the top view represents the local 
geocentric horizontal plane. It should be clarified here that the 
bank angle 7 is defined to be the angle between the lift vector and the 
vertical geocentric plane containing the aerodynamic velocity vector. 
The lift and drag resolutions are respectively: 

F = L (- sin 7 sin A - cos 7 cos 8 cos AZ) le 
' C  

L 2 A 

+ L (cos 7 sin e,) ir 
- 

+ L (sin 7 cos AZ - cos 7 cos 8 sin A ) lA A Z 

FD = D (- sin BA cos AZ) 1@ f D (- COS BA) lr 
C 

- 
+ D (- sin eA sin AZ) lX (27) 

With the lift and drag directions resolved into the rotating 
coordinate system axes, there remains the magnitudes of those aerodynamic 
forces which are respectively: 

1 D = q S CD = 2 p VA2 S (CD + aD a + bD $1 
0 



10 

- L  

sin i" - L cos 7 cos BA 

' 4  
L s in  7 

s in  BA 

y cos AZ 

- 

D 

4 
I /-L cos 7 s in  eA 

! \k 

FIGURE 2. AERODYNAMIC FORCE RESOLUTION 
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where p is the atmospheric mass density, S is the vehicle total effective 
aerodynamic surface area, and aL, bL, CD , aD, and bD are empirical 

coefficients which determine the total lift and drag coefficients C, 

and CD, respectively, as a function of aerodynamic angle of attack and 

Mach number. 

0 

Equations 28 and 29 yield the aerodynamic forces to be used in 
Newton's Second Law for the 
force per vehicle MSS then 

- 
{[-sin 7 FA P 'A' 

m - 2  m 
- - - -  

+ [ -  sin eA cos Az] 

n v.2 s 

vehicle equations of motion. The aerodynamic 
becomes : 

sin A - cos 7 cos 8 cos Az] (a, a +bL $1 Z A 

<cD + aD a + bD $11 i@ 
0 C 

P A  + - -  { [cos 7 sin BA] (aL a + bL $1 2 m  

+ E- COS 0 I (cD + a,, a + bD a 9 1  ir 
A .  

{[sin 7 cos AZ - cos 7 cos 0 
P 'A' + - -  2 m  sin AZ](aL a +bL a2) A 

+ E -  sin sin Az] (CD + aD a + bD a?)] 1?, 
0 

SECTION VI. DERIVATION OF THE COORDINATE TRANSFORMATION EQUATIONS 

During the course of the re-entry trajectory, the orientation of the 
rotating coordinate axis system in which the equations of motion are 
expressed is continuously changing with respect to fixed space. 
desired to express certain inertial and space-fixed vector quantities of 
the moving coordinate system in terms of the inertial platform coordinate 
system defined in Section 11. This resolution may be accomplished by an 
appropriate sequence of Euler angle rotations of the moving coordinate 
axes and a subsequent coordinate translation of the origin of the 
rotated coordinate system from the center of the earth to the surface of 
the earth. 

It is 
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z 
2 1 

This Euler angle sequence is illustrated - in Figure 3. The first 
Euler rotation is about the instantaneous 1 h axis through an angle 

equa 1 to 
expressed 

he instantaneous geocentric latitude. 
in matrix form are: 

The resolution equations 

r 
COS Q~ sin QC 0 

- sin @c COS Qc 0 = I  
I o  0 1 

C 

- 
r 1 

- 
5 

The second Euler rotation is about the newly 
- 

eenerated Ix, axis through 
I A 

I 
an angle equal to the space-fixed longitude. 
expressed in matrix form are: 

The resolution equations 

- 
The third Euler rotation is about the newly generated 1z2 axis through 
an angle equal to the initial geocentric latitude. 
equations expressed in matrix form are: 

The resolution 

O l  

30s Q - sin Q 
C 

0 
C 

0 

sin aC cos Qc 0 
0 0 

0 0 1 

(33 1 

The fourth Euler rotation is about the initial ir axis through an angle 
equal to the initial space-fixed azimuth. 
expressed in matrix form are: 

The resolution equations 
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FIGURE 3 .  COORDINATE AXES EULER ROTATIONS 
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- 

1 

1 

v - 
5 

cos AI 0 sin AI 

0 1 0 

- sin AI 0 cos AI 

The total vector resolution is then obtained 
matrix multiplications which yield: 

( 3 4 )  

by performing the appropriate 

cosAI~o~Oc cosAIcosQ sin@c- 
0 cO 

cosAIsin@ cosAsin@c cosAIsinQ C cosAcosQ C 
0 

C 
0 

s inAIs inAs in4 +sinAIsinAcos@c 

sin@ sinOc+ 
C C sin @ cos@ 

cos@c cosAsinQc cos@c cosAcos@c 
0 

C 
0 

0 
0 

sinAIcos@ cos@ + -sinAIcos@ C sinOc+ 
0 

C C 
0 

sinAIsin@ cosAsinOc sinAIsin@ C coshcosOc 
0 0 
C 

+cosAIsinAcos@ 
C 

.cosA sinhsino I C 

cosAIsinOc sinA 
0 

+sinAIcosh 

-cos@ sinA 
C 
0 

- s inAIs in@ s inll 
C 
0 

+cosAIcosA 

This combined matrix will then transform the space-fixed displacement, 
velocity, or acceleration vectors from the instantaneous space-fixed 
orientation of the moving coordinate system into the idealized inertial 
platform coordinate system orientation. 
origin along the 1 
platform coordinate system, i.e., 

A subsequent translation of the 
axis then yields the final idealized inertial 

‘I 

‘Ip = VE - ro ( 3 6 )  

where vp is the platform 7, vE is the resolved space-fixed 7, and r 0 

i s  the radius of the earth at the re-entry point. 



SECTION VII. ASSEMBIAGE OF TKE FINAL EQUATIONS 
OF MOTION FOR NUMERICAL SOLUTION 

The equations of motion may now be obtained by equating the results 
of equation 8 to the results of equation 17 plus equation 30. Cancellation 
of the unit vectors then yields the three simultaneous scalar differential 
equations: 

L L D 
m Z m  A m A 

- - sin 7 sin A - - cos 7 cos 8 cos AZ - - sin 8 cos AZ (37) 

(38) 
L D 
m A m  A + - cos 7 sin 8 - - COS 8 

r X cos aC + 2; <i + w) cos - 2r ic (i + w) sin Q~ 

L L 
m Z m  A 

- -  - sin 7 cos A - - cos 7 cos 8 sin AZ 

(3 9) D 
m A - - sin Q sin AZ 

Solving each of the differential equations for the highest derivative 
then puts them in a form solvable by numerical integration on the IBM 7090 
digital computer: 

2; ic 
C r C C - 9 J ey sin 2Q C 

.. 
Q = - - - (i + w)2 sin Q cos Q 

L 
m - ${: sin 7 sin AZ + - cos 7 cos eA cos AZ 

D 
m A + - sin e cos AZ) (40)  
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D 
m A - - cos e 

L 
+ r cos Q~ m 

1 {i sin y cos AZ - - cos y cos e A sin AZ 

D 
m 

To solve this set of differential equations, it is necessary to 
provide six initial conditions. 
be\specified by considering the initial position of the vehicle. 
initial geocentric latitude and initial earth longitude may be specified 
directly. 
geocentric altitude and applying the formula derived in Figure 4.  

Three of those initial conditions may 
The 

The displacement may be derived by specifying the initial 

r =  

C 

(43 ) 

The remaining three initial conditions may be derived by considerations of 
the initial space-fixed velocity of the vehicle: 

(44 1 

r = VI cos 
0 

r (i + w) cos Q~ = v sin eI sin I 
0 

0 0  

(45 1 

where VI is the initial space-fixed velocity, 8 I is the initial space- 
fixed dive angle, and A I is the initial space-fixed azimuth. 
space-fixed azimuth might also be expressed in terms of the inclination 
(j) of the vehicle's instantaneous orbit plane to the equatorial plane: 

The initial 
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North Pole 
z 

z = r  sin bc 
@ C  

P2 z2 
7 + 7 = 1  
rE P 

South Pole 

P r rE 

r - r  + h  
@C 
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The initial.conditions to be obtained from the initial velocity 
considerations thus become: 

VI sin GI COS AI 

r 
- ic - 

0 0 

I r = VI cos 8 
0 

I VI sin sin A 
i =  
0 r cos @ 

0 C 
0 

SECTION VIII. INPUT REQUIREMENTS FOR TIIE COMPUTATIONAL PROCEDURE 

The input requirements for the JBM 7090 re-entry program fall broadly 
into three categories: (a) geophysical data (b) aerodynamic data, and 
(c) initial conditions for the equations of motion. 

The geophysical data required are the Gaussian constant (GM), second 
order figure constant (J), the equatorial radius (rE)’ the polar radius 
(r ), and the angular velocity of rotation (w). 
> P  
may be manipulated to produce any oblate spheroid and corresponding 
gravitational field desired. 
five items can be found in Reference 2. 

The first four parameters 

The values used by the author for those 

The aerodynamic data required are atmospheric phenomena and vehicle 
characteristics. The Computation Division provides 1959 ARDC standard 
atmospheric mass density and speed of sound data, both as a function of 
altitude. Provisipn is made t o  generate any variation from a standard 
atmosphere by a density modification factor which is constructed as a 
curve read function of altitude. A wind velocity profile as a function 
of altitude and a constant wind azimuth are also available. Provision 
is made for a constant,effective aerodynamic surface area to vehicle mass 
rates (S/rn), a constant angle of attack ( a ) ,  and a constant bank angle 
(7). aD,and bD) which determine 

the lift and drag coefficients may be specified as a curve read function 
of Mach number. 

$e empirical constants (aL, bL, cD 
0 
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The initial conditions of the equations of motion may be effected 
via Section VI by specifying the vehicle's initial space-fixed velocity 
(VI), initial space-fixed dive angle (eI), initial space-fixed azimuth 

(AI) or instantaneous orbital inclination (j), initial earth longitude 

(Ao), initizl geccentric latitude (Q ), and initial geocentric altitude 
C 

0 

The print-out time interval (At) P of the integration step time interval (At) which is also arbitrary accord- 
ing to the computational accuracy desired. 

may be chosen to be any multiple 

SECTION IX. CONCLUSION 

A system of equations has been derived which can be solved numerically 
on the IBM 7090 digital computer to describe the motion of a vehi.cle re- 
entering the atmosphere of the earth. 
and displacement as a function of time can be obtained in a spare-fixed 
coordinate system which is parallel to the space-fixed platform on board 
the vehicle. 
easily adaptable to hardware accuracy studies. 

Components of acceleration, velocity, 

Thus, the trajectory simulation given by these equations is 
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